
Novak, Matt. 2025. “Librarians Are Tired of Being Accused of Hiding Secret Books That Were Made Up by AI.” Gizmodo, 11 de diciembre de 2025. https://gizmodo.com/librarians-arent-hiding-secret-books-from-you-that-only-ai-knows-about-2000698176
Todo el mundo sabe que los chatbots con IA como ChatGPT, Grok y Gemini suelen inventarse fuentes. Pero para las personas encargadas de ayudar al público a encontrar libros y artículos de revistas, las referencias falsas de la IA están pasando factura. Según una nueva publicación de Scientific American, los bibliotecarios parecen absolutamente agotados por las solicitudes de títulos que no existen.
Una problemática creciente en bibliotecas y centros de información provocada por la expansión del uso de chatbots de inteligencia artificial como ChatGPT, Grok o Gemini: la generación de títulos de libros, artículos y citas que en realidad no existen. Estas herramientas, debido a sus frecuentes “alucinaciones” (es decir, respuestas plausibles pero inventadas), han llevado a que muchos usuarios crean que dichos títulos son reales y se dirijan a los bibliotecarios con solicitudes para encontrarlos. Esta situación está causando frustración entre los profesionales de la información, quienes deben invertir tiempo y esfuerzo en demostrar que tales obras no existen en ningún catálogo o archivo conocido.
Según testimonios recopilados, como el de Sarah Falls del Library of Virginia, alrededor del 15% de las consultas de referencia recibidas por correo electrónico provienen directamente de sugerencias generadas por IA, muchas de las cuales incluyen títulos inventados o citas erróneas. Lo que agrava la situación no es solo la frecuencia de estas consultas, sino también el hecho de que parte del público confía más en la respuesta de la IA que en la experiencia de un bibliotecario profesional, lo cual ha generado situaciones tensas en las que usuarios insisten en la existencia de un libro pese a la demostración de que este nunca fue publicado.
Asimismo, el artículo señala que esta tendencia plantea un desafío más amplio para la comunidad académica y científica, ya que diluir la calidad de las referencias podría erosionar la confianza en el sistema de investigación y en la fiabilidad de las fuentes. Mientras que los modelos de IA pueden ser útiles para sintetizar o resumir información, su falta de capacidad para verificar hechos contra bases de datos reales implica que las instituciones y los investigadores deben adoptar prácticas de verificación más estrictas y educar a los usuarios sobre las limitaciones de estas tecnologías. Esto incluye pedir a quienes hagan consultas que indiquen si la referencia proviene de una IA y animarles a validar independientemente cualquier cita recibida.








