Archivo de la etiqueta: Ética de la información

Citas invisibles y métricas falsas: la ingeniería oculta detrás de las métricas científicas

How Thousands of Invisible Citations Sneak into Papers and Make for Fake Metrics.” Retraction Watch. Publicado el 9 de octubre de 2023.
https://retractionwatch.com/2023/10/09/how-thousands-of-invisible-citations-sneak-into-papers-and-make-for-fake-metrics/

Se describe cómo investigadores detectaron un mecanismo de manipulación de métricas científicas consistente en la inserción de «citas invisibles» (o “sneaked citations”). En 2022, el informático Guillaume Cabanac observó un caso extraño: un artículo tenía más de 100 citas en menos de dos meses, pese a haberse descargado solo 62 veces. Cuando se decidió revisar los archivos de metadatos que las editoriales proporcionan a las bases de datos, y se descubrió que contenían referencias que no estaban visibles ni en el PDF ni en la versión online del artículo.

El artículo explica cómo miles de “citas invisibles” pueden infiltrarse en los metadatos de artículos científicos y generar métricas falsas. La alerta surgió cuando un investigador descubrió que un artículo acumulaba más de cien citas en menos de dos meses, pese a que apenas había sido descargado. Esto llevó a examinar los archivos de metadatos que las editoriales envían a los sistemas de indexación, donde se encontró que incluían referencias que no aparecían en el PDF ni en la versión web del artículo.

A partir de esta sospecha, se revisaron los metadatos que las editoriales envían a las bases de datos. En esos archivos —que contienen información técnica para la indexación, como títulos, autores, resúmenes y referencias— se encontraron listas de citaciones que no aparecían en el artículo tal como lo ve el lector. Es decir, la versión en PDF o HTML mostraba una bibliografía normal, pero la versión enviada a los indexadores incluía muchas más referencias añadidas artificialmente. Estas “citas fantasma” no estaban destinadas al lector, sino a los sistemas automatizados.

El problema es que la mayoría de plataformas que calculan métricas —incluyendo sistemas que cuentan citas, generan índices de impacto o alimentan rankings académicos— se basan en esos metadatos. No revisan manualmente las bibliografías visibles, sino que extraen la información directamente de los archivos técnicos. Esto significa que una cita inexistente en el papel puede convertirse en una cita “real” en las métricas, alterando indicadores que son usados en evaluaciones, promociones y decisiones de financiación.

La investigación mostró que esta no era una irregularidad aislada, sino un patrón repetido en varias revistas controladas por un mismo editor. En algunos casos, casi una décima parte de todas las referencias de los artículos eran invisibles para los lectores, pero muy visibles para los algoritmos. Lo más preocupante es que estas citas fantasma beneficiaban sobre todo a un grupo pequeño de autores, lo que sugiere que no eran simples errores técnicos, sino un mecanismo deliberado para inflar perfiles individuales.

Este tipo de manipulación es especialmente peligrosa por su invisibilidad. No se trata de alterar un manuscrito, plagiar contenido o falsificar datos; el artículo, tal y como se publica, parece completamente normal. Toda la distorsión ocurre en una capa oculta que solo las máquinas leen y que pocos investigadores examinan. Esta sofisticación hace que sea mucho más difícil detectar el fraude y, por tanto, mucho más fácil que pase desapercibido durante largos periodos.

El artículo también subraya las implicaciones más amplias para el ecosistema de investigación. Las métricas bibliométricas se han vuelto herramientas cruciales para evaluar la productividad, el prestigio y la influencia científica. Cuando estas métricas pueden manipularse de manera tan sencilla, y a una escala tan grande, se compromete la credibilidad de todo el sistema de evaluación. Investigadores que juegan limpio pueden quedar en desventaja frente a quienes manipulan los metadatos; instituciones pueden otorgar recursos basándose en indicadores inflados; y el público puede perder confianza en la fiabilidad de la ciencia.

Finalmente, se plantea la necesidad urgente de que las editoriales, los indexadores y las plataformas bibliométricas revisen sus procedimientos, auditen los metadatos que reciben y establezcan medidas de detección de anomalías. La transparencia en la gestión de metadatos y la trazabilidad de las referencias podrían ayudar a evitar este tipo de prácticas. Sin medidas correctoras, las “citas invisibles” seguirán distorsionando el sistema científico y creando métricas engañosas que no reflejan la calidad real del trabajo académico.

Suben las calificaciones de los trabajos de clase y bajan las notas en los exámenes presenciales

Oatley, Gabe. 2025. “The New Learning Curve: How Student AI Use Is Changing Teaching at UofT.” TorontoToday.ca, November 24, 2025. https://www.torontotoday.ca/local/education/learning-curve-student-artificial-intelligence-use-changing-teaching-uoft-11532998

Estudio

El uso creciente de herramientas de inteligencia artificial por parte del alumnado está transformando profundamente la enseñanza en la University of Toronto. Los profesores han detectado un fenómeno especialmente llamativo: mientras que las calificaciones de los trabajos para casa han subido de forma notable, los resultados en los exámenes presenciales finales han caído de manera significativa. Esta divergencia, según apuntan, se explica por un uso extendido —y en muchos casos no declarado— de modelos de lenguaje avanzados para elaborar tareas que antes exigían un esfuerzo de lectura, análisis y redacción personal.

Datos clave:

  • El 59 % de los estudiantes canadienses encuestados usan IA generativa para sus trabajos escolares — un aumento respecto al 52 % del año anterior.
  • De entre los estudiantes que usan IA, un 67 % dice que no cree estar aprendiendo o reteniendo tanto conocimiento como antes.
  • A pesar de ello, el 75 % considera que las herramientas de IA han mejorado la calidad de sus trabajos escolares.
  • El uso frecuente: el 63 % dice usar IA generativa varias veces por semana.
  • El 82 % admite que presenta como propio contenido generado por IA.
  • Un 70 % prefiere recurrir a la IA antes que pedir ayuda a sus profesores.
  • Entre quienes usan IA, aproximadamente un 65 %–67 % sienten que su uso equivale a hacer trampa.
  • El 63 % teme ser descubierto por su institución por depender de IA en sus trabajos.

Ante esta realidad, los docentes han comenzado a observar patrones de comportamiento nuevos en su alumnado. Muchos estudiantes recurren a herramientas como ChatGPT o Gemini para resolver dudas, generar ideas iniciales o mejorar la coherencia de sus textos, lo que en algunos casos puede tener un efecto positivo, especialmente cuando se usa para reforzar el aprendizaje. Sin embargo, un número creciente de estudiantes emplea la IA como sustituto del propio proceso cognitivo: delegan totalmente la elaboración de trabajos escritos o incluso la resolución de ejercicios técnicos. Esto ha generado una sensación de falsa competencia, pues los trabajos parecen impecables pero el rendimiento en evaluaciones sin asistencia tecnológica revela lagunas importantes de comprensión.

El artículo también subraya que detectar el uso indebido de IA es una tarea compleja. Las herramientas de detección disponibles no son fiables, y los profesores encuentran difícil —y muchas veces imposible— demostrar que un texto ha sido producido o modificado sustancialmente por un sistema automático. Además, la dinámica de aprendizaje ha cambiado: los estudiantes hacen menos preguntas en clase, participan menos en foros y asisten menos a tutorías, ya que encuentran en la IA una fuente inmediata de respuestas, disponible en cualquier momento. Para parte del profesorado, esta sustitución del diálogo pedagógico por consultas a modelos generativos supone la pérdida de una dimensión esencial de la educación universitaria: la interacción humana, que permite matizar conceptos, plantear dudas profundas y construir pensamiento crítico.

Frente a estos desafíos, los profesores de la universidad están rediseñando sus estrategias docentes. Una respuesta habitual ha sido aumentar el peso de las evaluaciones presenciales, incluyendo exámenes escritos en el aula, defensas orales o entrevistas breves vinculadas a trabajos entregados. De este modo, se busca comprobar que los estudiantes realmente dominan los contenidos que presentan en sus tareas. Otra estrategia consiste en diseñar actividades “auténticas”, vinculadas a experiencias reales, análisis de campo, estudios de caso o ejercicios creativos basados en situaciones concretas que resultan más difíciles de delegar a una IA. En algunas asignaturas se ha optado por dividir las tareas en fases: por ejemplo, primero marcar y comentar un texto leído, y solo después elaborar una reflexión personal. Esto permite observar el proceso de pensamiento del estudiante y no solo el producto final.

A lo largo del artículo se destaca que el uso de IA en la educación superior ya no es una tendencia pasajera, sino un cambio estructural que obliga a repensar la evaluación y la enseñanza. Según los profesores entrevistados, la forma tradicional de asignar trabajos y corregirlos ha dejado de ser viable en un contexto donde una herramienta automatizada puede producir textos correctos en segundos. La cuestión ya no es si permitir o prohibir estas tecnologías, sino cómo integrarlas de manera responsable, enseñando a los estudiantes a utilizarlas como apoyo sin renunciar a la comprensión profunda, el razonamiento propio y el desarrollo de habilidades intelectuales fundamentales. En definitiva, la universidad se enfrenta a una nueva curva de aprendizaje institucional, en la que conviven innovación, preocupación y la necesidad urgente de adaptar la pedagogía a un entorno educativo donde la inteligencia artificial es parte del día a día.

Uso y desarrollo ético de la Inteligencia Artificial en la UNAM

Uso y desarrollo ético de la Inteligencia Artificial en la UNAM. Autores Dra. Luz María Castañeda de León Dra. Ana Yuri Ramírez Molina Mtro. Juan Manuel Castillejos Reyes Mtra. María Teresa Ventura Miranda. Primera edición digital, octubre de 2025. Universidad Nacional Autónoma de México (UNAM) Dirección General de Cómputo y de Tecnologías de Información y Comunicación. ISBN 978-607-587-954-3.

Texto completo

Este trabajo se enmarca en las recomendaciones de la UNESCO sobre la ética de la IA (2021–2024) y en el Plan de Desarrollo Institucional de la UNAM 2023–2027. Su objetivo principal es promover una integración responsable de los sistemas de IA (SIA) en la docencia y la investigación universitarias.

En su primera parte, el texto define la IA desde las perspectivas de la Unión Europea y la OCDE, destacando su carácter sistémico, autónomo y adaptable. Asimismo, subraya la necesidad de un entendimiento crítico de estas tecnologías, sobre todo en contextos del Sur Global, donde las condiciones tecnológicas y económicas difieren de las del Norte Global. Se emplean dos modelos teóricos: la Teoría de la Acción Razonada de Fishbein y Ajzen, para explicar la adopción de conductas éticas en el uso de IA, y el Modelo de Resolución de Problemas de Kaufman, que orienta un proceso de mejora continua.

El documento analiza las tendencias del uso de la IA en la docencia universitaria, abordando su papel en el aprendizaje adaptativo, la generación de contenidos, la evaluación y la analítica del aprendizaje. Estas aplicaciones facilitan la personalización educativa, aunque implican desafíos como la pérdida de control docente, la integridad académica o los sesgos algorítmicos. En el ámbito de la investigación, la IA contribuye a procesar grandes volúmenes de datos, acelerar publicaciones y fomentar la colaboración científica, pero plantea dilemas sobre autoría, fiabilidad de la información y privacidad de los datos.

La sección sobre ética propone cinco principios fundamentales (beneficencia, no maleficencia, autonomía, justicia y transparencia), inspirados en la UNESCO, que deben guiar el uso universitario de la IA. Además, se revisan los marcos internacionales de integración ética y se comparan con el Código de Ética Universitario de la UNAM, que promueve valores como la honestidad, la igualdad y la responsabilidad social. Aunque la institución aún no cuenta con un marco formal de integración de la ética en los SIA, existen esfuerzos en distintas dependencias por promover comportamientos éticos en la investigación y la docencia.

Finalmente, el informe recomienda desarrollar políticas institucionales que orienten el uso ético de la IA, fomentar la alfabetización digital y ética de la comunidad universitaria, y establecer mecanismos de supervisión y evaluación continua. El propósito es garantizar que la innovación tecnológica se alinee con los valores humanistas y sociales que caracterizan a la UNAM.

Aprendizaje con IA: Una recopilación de artículos escritos por estudiantes

University of Leeds Libraries. “New Student-Led Open Education Resource Showcases Student Voices on AI.” Leeds University Libraries Blog, September 9, 2025.

PDF

EPUB

Los textos relatan experiencias reales de uso de inteligencia artificial generativa (GenAI) en el estudio, abarcando cómo dicha tecnología puede facilitar la comprensión, fomentar la creatividad y la confianza, así como apoyar un aprendizaje más personalizado y accesible

Un tema resaltado en las aportaciones de los estudiantes es la conciencia ética: muchos reflexionan sobre el uso responsable de la IA, los límites apropiados, las implicaciones de integridad académica, y cómo evitar depender demasiado de la tecnología sin comprensión crítica.

Los casos incluyen ejemplos de usos diversos: desde herramientas que ayudan a estructurar ideas o investigar, hasta aplicaciones que permiten adaptaciones para quienes tienen necesidades de aprendizaje distintas.

El recurso ha sido desarrollado como parte de la iniciativa University of Leeds Open Books, usando la plataforma Pressbooks. Está licenciado de forma abierta (“open license”) y está disponible libremente para que cualquiera lo lea, lo use y lo adapte. Además, se plantea como un “libro vivo”: se aceptan nuevas contribuciones hasta el 1 de noviembre de 2025, y todas las aportaciones pasan por un proceso de revisión por pares gestionado por el equipo editorial estudiantil.

El proyecto cuenta con el apoyo institucional de varias áreas de la universidad: la Escuela de Educación, las Bibliotecas, el Servicio de Educación Digital, Desarrollo Organizacional y Profesional, Curriculum Redefined, el Leeds Institute for Teaching Excellence (LITE), y la Knowledge Equity Network. También hay patrocinio de altos cargos universitarios implicados en educación y experiencia estudiantil, lo que indica un compromiso institucionalidad con la calidad educativa, la equidad y la innovación pedagógica.

La mayor demanda colectiva por derechos de autor contra la industria de la IA: el caso Anthropic

Novet, Jordan. “AI Industry Horrified to Face Largest Copyright Class Action Ever Certified.” Ars Technica, August 21, 2025. https://arstechnica.com/tech-policy/2025/08/ai-industry-horrified-to-face-largest-copyright-class-action-ever-certified/.

Investigadores se han convertido en protagonistas de un caso sin precedentes: un tribunal federal en California ha aprobado una demanda colectiva (class action) contra Anthropic, una startup especializada en inteligencia artificial. Tres autores (Andrea Bartz, Charles Graeber y Kirk Wallace Johnson) actúan como representantes de todos los escritores cuyos libros registrados hayan sido descargados y utilizados por Anthropic para entrenar su modelo de IA. La demanda alega que la empresa obtuvo millones de títulos de sitios pirata como LibGen y PiLiMi sin consentimiento, lo que podría derivar en daños millonarios para la compañía si se prueba la infracción.

Desde la perspectiva legal, aunque el juez William Alsup reconoció que el entrenamiento del modelo podría constituir un uso legítimo (fair use), también resolvió que la mera conservación de libros piratas en una biblioteca central viola los derechos de autor, lo que justifica llevar el caso a juicio. En paralelo, organizaciones del sector tecnológico, como la Consumer Technology Association y la Computer and Communications Industry Association, han expresado su alarma ante un veredicto adverso: advierten que esta certificación de clase podría representar una amenaza existencial para Anthropic y el ecosistema emergente de IA en EE. UU., al desalentar futuros inversores y minar la competitividad tecnológica del país.

La demanda se ha expandido de forma dramática: lo que comenzó con tres autores podría llegar a incluir hasta 7 millones de demandantes potenciales, cada uno con posibilidad de reclamar hasta 150.000 USD por obra infringida. Eso transforma el caso en el mayor litigio por derechos de autor jamás aprobado en EE. UU., con riesgos financieros que podrían ascender a cientos de miles de millones de dólares.

El auge alarmante de los artículos científicos fraudulentos

Fraudulent Scientific Papers Are Booming.” The Economist, 6 de agosto de 2025. https://www.economist.com/science-and-technology/2025/08/06/fraudulent-scientific-papers-are-booming

Se analiza un problema creciente y alarmante en la ciencia: el aumento exponencial de artículos científicos fraudulentos. Mientras que el número total de publicaciones científicas se duplica aproximadamente cada quince años, el número estimado de artículos fraudulentos se duplica cada año y medio, lo que indica un ritmo mucho más acelerado de expansión de la falsedad en la literatura académica. Esta tendencia sugiere que, si continúa, los estudios fraudulentos podrían llegar a representar una proporción significativa del conocimiento científico disponible.

Uno de los factores clave detrás de este fenómeno son los llamados «paper mills», organizaciones que venden artículos ya redactados o fabricados, muchas veces con datos falsos, imágenes manipuladas o plagios. A cambio, los científicos obtienen autorías o citas sin esfuerzo real. Estas redes operan con una sofisticación sorprendente, casi como mafias, e involucran a editores corruptos, intermediarios y revistas vulnerables. Solo un pequeño número de individuos en posiciones editoriales puede facilitar la publicación masiva de estudios falsos, lo que multiplica la propagación del fraude.

El sistema editorial, tal como está estructurado, muestra vulnerabilidades importantes. Los intentos de combatir la difusión de artículos fraudulentos, como retirar revistas de bases de datos académicas o deindexarlas, han sido insuficientes. La proliferación de estudios falsos distorsiona campos enteros, dificulta los procesos de revisión y pone en riesgo los meta-análisis que guían prácticas médicas y científicas. Esto erosiona la confianza tanto dentro de la comunidad científica como en el público general, amenazando la credibilidad del método científico y sus aplicaciones.

Para llegar a su conclusión, los autores buscaron artículos publicados en PLOS ONE, una revista importante y generalmente reconocida que identifica cuál de sus 18.329 editores es responsable de cada artículo. (La mayoría de los editores son académicos que realizan la revisión por pares durante toda su investigación). Desde 2006, la revista ha publicado 276.956 artículos, 702 de los cuales fueron retractados y 2.241 recibieron comentarios en PubPeer, un sitio web que permite a otros académicos y a investigadores en línea plantear inquietudes.

El artículo también hace un llamado urgente a reforzar la integridad académica. Aunque existen herramientas para contrarrestar la amenaza —como retractaciones, exclusión de autores o instituciones, y revisiones de indexación en bases académicas—, las medidas actuales no son suficientes frente al crecimiento desenfrenado del fraude. De no implementarse estrategias más rigurosas y coordinadas, advierten los expertos, la propia ciencia podría verse comprometida.

Para preservar la credibilidad y la utilidad del conocimiento científico, será crucial que las instituciones académicas, las publicaciones y los evaluadores actúen de manera decidida y coordinada, reformando incentivos y fortaleciendo los mecanismos de control y verificación.

Contenido generado por IA está contaminando los servidores de preprints

Watson, Traci. «AI content is tainting preprints: how moderators are fighting backNature, 12 de agosto de 2025. https://doi.org/10.1038/d41586-025-02469-y.

Diversos servidores de preprints —como PsyArXiv, arXiv, bioRxiv y medRxiv— están detectando un aumento en el número de manuscritos que parecen haber sido generados o asistidos por inteligencia artificial o incluso por fábricas de artículos («paper mills»). Este comportamiento plantea serias dudas sobre la integridad de la ciencia abierta y la velocidad de publicación sin control.

Un caso emblemático involucró un manuscrito titulado “Self-Experimental Report: Emergence of Generative AI Interfaces in Dream States” publicado en PsyArXiv. El estilo estrambótico del contenido, la falta de afiliación del autor y la ausencia de detalles claros sobre el uso de IA llevaron a una alerta lanzada por la psicóloga Olivia Kirtley, quien luego solicitó su eliminación. Aunque el autor afirmó que la IA solo tuvo un papel limitado (como cálculo simbólico y verificación de fórmulas), no lo declaró explícitamente, lo que violó las normas del servidor.

En el servidor arXiv, los moderadores estiman que aproximadamente un 2 % de las presentaciones son rechazadas por tener indicios de IA o ser elaboradas por paper mills.

En bioRxiv y medRxiv, se rechazan más de diez manuscritos al día que resultan sospechosos de ser generados de forma automatizada, dentro de un promedio de 7.000 envíos mensuales

Los servidores de preprints reconocen un incremento reciente en contenido generado por IA, especialmente tras el lanzamiento de herramientas como ChatGPT en 2022. Esto ha generado una crisis creciente en apenas los últimos meses. El Centro para la Ciencia Abierta (Center for Open Science), responsable de PsyArXiv, expresó públicamente su preocupación por esta tendencia.

Un estudio publicado la semana pasada en Nature Human Behavior estima que, en septiembre de 2024, casi dos años después del lanzamiento de ChatGPT, los LLM produjeron el 22 % del contenido de los resúmenes de informática publicados en arXiv y aproximadamente el 10 % del texto de los resúmenes de biología publicados en bioRxiv. En comparación, un análisis de los resúmenes biomédicos publicados en revistas en 2024 reveló que el 14 % contenía texto generado por LLM en sus resúmenes. (imagen de arriba)

Sin embargo, aplicar filtros más rigurosos para detectar contenido automatizado presenta desafíos: requiere recursos adicionales, puede ralentizar el proceso de publicación y genera dilemas sobre qué contenidos aceptar o rechazar sin convertirse en un sistema excesivamente burocrático

La proliferación de contenido no fiable amenaza con erosionar la credibilidad de la ciencia de los repositorios de preprints, que juegan un papel cada vez más relevante en la difusión rápida de descubrimientos. Se vuelve clave que los servicios de preprints implementen mecanismos de detección más sofisticados, promuevan la transparencia respecto al uso de IA en la redacción y mantengan un equilibrio entre agilidad de publicación y rigor científico.

La manipulación de chatbots puede multiplicar por 12 la exposición de información privada

Zhan, Xiao; Carrillo, Juan-Carlos; Seymour, William; y Such, José. 2025. “Malicious LLM-Based Conversational AI Makes Users Reveal Personal Information.” En Proceedings of the 34th USENIX Security Symposium, USENIX Association.

Texto completo

Un estudio reciente de King’s College London ha puesto de relieve la vulnerabilidad de los chatbots de inteligencia artificial (IA) con apariencia conversacional humana, utilizados por millones de personas en su vida diaria. La investigación demuestra que estos sistemas pueden ser manipulados con relativa facilidad para conseguir que los usuarios revelen mucha más información personal de la que compartirían en un contexto habitual.

Los resultados son especialmente llamativos: cuando los chatbots son diseñados o modificados con intenciones maliciosas, los usuarios llegan a proporcionar hasta 12,5 veces más datos privados que en interacciones normales. Este incremento se logra mediante la combinación de técnicas de ingeniería de prompts —instrucciones específicas que orientan el comportamiento del modelo— y estrategias psicológicas bien conocidas, como la creación de confianza, la apelación emocional o el uso de preguntas aparentemente inocentes que llevan a respuestas más profundas de lo esperado.

El estudio recalca además que no es necesario poseer una alta especialización técnica para lograr esta manipulación. Dado que muchas compañías permiten el acceso a los modelos base que sustentan a sus chatbots, cualquier persona con conocimientos mínimos puede ajustar parámetros y configuraciones para orientar la conversación hacia la obtención de datos sensibles, lo que multiplica el riesgo de un uso indebido.

Las implicaciones son serias. El trabajo de King’s College London alerta sobre la fragilidad de la privacidad en entornos digitales donde la interacción con chatbots se percibe como inofensiva y rutinaria. En contextos como la atención al cliente, el asesoramiento médico o financiero, o incluso el acompañamiento emocional, la posibilidad de que un chatbot manipulado extraiga información confidencial plantea amenazas directas a la seguridad de las personas y a la protección de sus datos.

Ante este escenario, los investigadores subrayan la urgente necesidad de reforzar las medidas de seguridad y protección de datos en los sistemas de IA conversacional. Proponen, entre otras acciones:

  • Desarrollar protocolos de verificación más estrictos sobre el acceso y modificación de modelos base.
  • Implementar mecanismos de detección de manipulación en los propios chatbots.
  • Fomentar la educación digital de los usuarios, para que reconozcan patrones de conversación sospechosos.
  • Establecer regulaciones claras y exigentes que limiten el mal uso de estos sistemas.

En definitiva, el estudio concluye que, aunque los chatbots de IA tienen un enorme potencial para mejorar la interacción humano-máquina, su diseño y despliegue deben ir acompañados de fuertes garantías éticas y técnicas, de lo contrario podrían convertirse en herramientas de explotación de la privacidad a gran escala.

La inteligencia artificial en la publicación académica: un estudio sobre las directrices y políticas de las revistas de Biblioteconomía y Documentación


Gao, W., Liu, G., Huang, M. B., & Yao, H. (2025). AI in Scholarly Publishing: A Study on LIS Journals’ Guidelines and PoliciesInternational Journal of Librarianship10(2), 85–100. https://doi.org/10.23974/ijol.2025.vol10.2.419

Se investiga el panorama actual de las directrices y políticas relacionadas con el uso de inteligencia artificial generativa en revistas del ámbito de la Bibliotecología y Ciencias de la Información (LIS).

En un contexto en el que herramientas como ChatGPT se han popularizado para realizar tareas como corrección gramatical, análisis estadístico o redacción de manuscritos, los autores destacan preocupaciones éticas sobre autoría, derecho de autor, reproducibilidad y transparencia en la investigación

Mediante un enfoque metodológico descriptivo, se revisaron las normas editoriales de un conjunto de revistas LIS seleccionadas a partir de la lista de Nixon y se aplicaron estadísticas básicas para comparar revistas con y sin políticas explícitas sobre IA generativa.

Los resultados revelan que, de las 45 revistas estudiadas, 31 (69 %) incluyen algún tipo de declaración sobre el uso de IA en sus directrices. La mayoría exige a los autores declarar el uso de estas herramientas, y algunas (16) extienden regulaciones también a editores y revisores, incluyendo prohibiciones como el uso de manuscritos en sistemas de IA externos.

Además, se observa una carencia notable de tales políticas en revistas de acceso abierto, lo que plantea riesgos en cuanto a la calidad editorial y la proliferación de prácticas predatorias. Los autores concluyen subrayando la necesidad de estandarizar las declaraciones sobre el uso de IA generativa para fortalecer la integridad del proceso de publicación académica.

Diseño de IA ética para estudiantes: manual de IA generativa para la educación primaria y secundaria

AI Advisory Boards. “Designing Ethical AI for Learners- Generative AI Playbook for K-12 Education (Quill).” AI Advisory Boards (blog), 28 de abril de 2025.

Texto completo

Quill.org ha elaborado un «playbook» práctico y fundamentado en la investigación para diseñar inteligencia artificial (IA) ética en entornos educativos K-12. Basado en más de seis años de experiencia y utilizado por más de diez millones de estudiantes, especialmente en escuelas con menos recursos, su enfoque demuestra que la IA puede reflejar el juicio de educadores expertos si se implementa de manera adecuada

El playbook se estructura en cuatro pasos fundamentales: primero, realizar investigación antes de escribir código, definiendo con claridad lo que significa un aprendizaje exitoso en cada contexto; segundo, crear datasets propios con entre 50 y 100 respuestas reales de estudiantes acompañadas de retroalimentación docente de alta calidad; tercero, evaluar la IA de forma temprana y continua, revisando manualmente más de 100,000 respuestas al año y aplicando pruebas A/B; y cuarto, crear un consejo asesor docente –el Teacher Advisory Council– compuesto por más de 300 profesores que revisan y prueban cada actividad en múltiples ciclos antes de su lanzamiento.

Además, el enfoque se basa en tres principios clave para que la retroalimentación de la IA sea efectiva: diseñar prompts textuales que fomenten respuestas fundamentadas; definir respuestas ejemplares mediante criterios claros y revisión de numerosos ejemplos; y ofrecer retroalimentación constructiva y accionable que promueva la revisión y el crecimiento del estudiante, sin sustituir al docente.

Este playbook invita a educadores y desarrolladores de tecnología educativa a adoptar un proceso ético, colaborativo, riguroso y centrado en la pedagogía, asegurando que la IA actúe como un verdadero aliado en el aprendizaje.