Datos listos para la IA: consideraciones clave para la ciencia abierta y responsable

McBride, Vanessa; Natalia Norori; Denisse Albornoz. Data and AI for Science: Key Considerations. Working Paper, International Science Council, septiembre de 2025. DOI: 10.24948/2025.11

Texto completo

El informe ofrece una visión amplia y crítica del cruce entre inteligencia artificial, datos y ciencia, destacando que solo mediante la combinación de apertura, responsabilidad y cooperación internacional se podrá aprovechar plenamente el potencial de la IA en beneficio del conocimiento y la sociedad.

El informe explora cómo la inteligencia artificial está transformando la práctica científica y qué condiciones deben cumplirse para que los datos puedan aprovecharse de manera efectiva, ética y sostenible. La noción central es la de datos “AI-ready”, es decir, conjuntos de datos preparados para ser procesados y reutilizados por sistemas de IA en beneficio de la investigación. Este concepto implica que los datos no solo deben estar disponibles, sino también estructurados, limpios, interoperables y documentados de manera adecuada.

Una parte importante del documento se centra en la calidad e interoperabilidad de los datos. La ciencia abierta ha impulsado normas como FAIR (Findable, Accessible, Interoperable, Reusable), pero el uso de IA añade nuevas exigencias. Por ejemplo, los algoritmos requieren datos con metadatos consistentes, esquemas comunes y estándares de anotación que permitan la reutilización automática. Además, se subraya que la preparación de datos para IA debe considerar la reducción de sesgos y garantizar la inclusión de voces y contextos diversos, para evitar reproducir inequidades existentes en los resultados científicos.

Otro eje del informe son las dimensiones éticas, sociales y ambientales. Los autores advierten que el entrenamiento y uso de grandes modelos de IA conlleva altos costes energéticos y huellas de carbono significativas, por lo que la sostenibilidad debe integrarse en la planificación de infraestructuras científicas. En paralelo, se examinan los riesgos para la privacidad, la seguridad y la soberanía de los datos, especialmente en campos sensibles como la biomedicina o las ciencias sociales. Estos retos requieren marcos sólidos de gobernanza que equilibren apertura y protección.

El informe también vincula la preparación de datos para IA con la agenda de la ciencia abierta. Se argumenta que los principios de transparencia, accesibilidad y colaboración resultan esenciales para garantizar que la IA potencie la ciencia de manera inclusiva y global. Se destacan casos prácticos en los que repositorios, proyectos colaborativos y consorcios internacionales han logrado implementar buenas prácticas de datos AI-ready, sirviendo como ejemplos para otras disciplinas.

Finalmente, se presentan recomendaciones estratégicas:

  • Consolidar marcos normativos y estándares internacionales, como FAIR-R y Croissant.
  • Invertir en infraestructuras digitales y capacidad de cómputo adecuadas para la investigación con IA.
  • Fortalecer la capacitación en gestión de datos e inteligencia artificial.
  • Reconocer institucionalmente la labor de quienes trabajan en la preparación y curación de datos.
  • Garantizar la equidad y la inclusividad en las políticas sobre datos e IA, evitando que el acceso desigual a recursos tecnológicos aumente las brechas entre regiones y comunidades científicas.