Los detectores de escritura realizada por IA actuales no son fiables en escenarios prácticos

Sadasivan, Vinu Sankar, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, y Soheil Feizi. “Can AI-Generated Text be Reliably Detected?arXiv, marzo 17, 2023. https://doi.org/10.48550/arXiv.2303.11156

Investigadores de la Universidad de Maryland, liderados por Soheil Feizi, profesor asistente de informática, han evaluado la fiabilidad de los detectores de contenido generado por inteligencia artificial (IA). Su conclusión es clara: los detectores actuales no son fiables en escenarios prácticos. Feizi señala que herramientas comunes como paráfrasis pueden reducir la precisión de detección a niveles similares a una simple moneda al aire.

Feizi distingue dos tipos de errores de detección: tipo I, cuando un texto humano es marcado como generado por IA, y tipo II, cuando un texto de IA pasa como humano. Ambos presentan graves implicaciones, especialmente en contextos académicos y editoriales, donde errores pueden arruinar reputaciones y ser extremadamente difíciles de refutar.

Adicionalmente, incluso los métodos basados en marcas digitales (watermarking), teóricamente diseñados para identificar contenido de IA, pueden ser vulnerables a ataques de suplantación. El investigador advierte que dichas fallas podrían socavar la credibilidad de los mecanismos de autenticación digital.

Soheil Feizi explica que, en la práctica, dada la semejanza en la distribución de estilos entre textos humanos y generados por IA —y la sofisticación creciente de las técnicas de engaño—, es “teóricamente imposible” distinguir con certeza absoluta el origen de un texto.

Por otro lado, Furong Huang, también profesora asistente en la Universidad de Maryland, adopta una posición más optimista. Ella sostiene que los modelos de detección podrían mejorar si se dispone de una gran cantidad de ejemplos genuinos de escritura humana para su entrenamiento. Es decir, la clave para refinar estas herramientas sería el acceso a más y mejores datos.