Análisis de las alucinaciones en los principales modelos de Inteligencia Artificial

Berenstein, David. “Good Answers Are Not Necessarily Factual Answers: An Analysis of Hallucination in Leading LLMs.” Hugging Face. Accedido el 12 de mayo de 2025. https://huggingface.co/blog/davidberenstein1957/phare-analysis-of-hallucination-in-leading-llms

Se analiza los errores de alucinación en los principales modelos de lenguaje mediante el uso del benchmark Phare (Potential Harm Assessment & Risk Evaluation). Este estudio pone el foco en un problema central: los modelos pueden ofrecer respuestas que suenan convincentes pero que contienen información falsa o inventada, lo que representa un riesgo real en su uso cotidiano.

Uno de los hallazgos principales del análisis es que más de un tercio de los errores detectados en sistemas de IA desplegados públicamente se deben a alucinaciones. Estas no solo son comunes, sino que además suelen ser difíciles de detectar, porque los modelos presentan esas respuestas con un alto grado de confianza. Esto puede confundir fácilmente a los usuarios, especialmente si no tienen el conocimiento necesario para evaluar la veracidad de lo que están leyendo.

La evaluación se llevó a cabo con el marco Phare, que analiza el rendimiento de los modelos a través de varias etapas: recolección de contenido auténtico y representativo, creación de ejemplos de prueba, revisión humana para asegurar la calidad y, finalmente, evaluación del comportamiento de los modelos. Dentro del módulo de alucinación, se valoraron cuatro tareas clave: la precisión factual, la capacidad para resistirse a la desinformación, la habilidad para desmentir bulos o teorías conspirativas, y la fiabilidad en el uso de herramientas externas como bases de datos o APIs.

Un aspecto especialmente relevante que destaca el estudio es la desconexión entre popularidad y fiabilidad. Es decir, que los modelos más valorados por los usuarios en términos de experiencia de uso no siempre son los más precisos en cuanto a la información que generan. Esto sugiere que una buena interacción no garantiza una buena calidad factual, y que es necesario avanzar en métricas que evalúen la veracidad con más rigor.

En conclusión el estudio muestra que las alucinaciones son un problema estructural de los modelos actuales y que su impacto es especialmente delicado en contextos donde la precisión es crítica, como la medicina, el derecho o la educación. Por ello, el artículo concluye que identificar y reducir estos errores debe ser una prioridad para mejorar la seguridad y fiabilidad de los modelos de lenguaje de gran escala.