
Walker-Wawrzycki, Alexandra. 2025. “From Data to Diagnosis – How AI Is Changing the World of Medicine.” Cosmos Magazine, May 7, 2025. https://cosmosmagazine.com/technology/ai/ai-in-medicine-data-diagnosis
La inteligencia artificial (IA) está revolucionando el ámbito de la medicina al automatizar procesos repetitivos y complejos, lo que permite a los profesionales sanitarios centrarse más en la atención directa al paciente.
Entre las aplicaciones actuales más destacadas se encuentra el uso de escribas digitales, programas que transcriben automáticamente las observaciones del médico en tiempo real durante la consulta. Estos sistemas, como Lyrebird, eliminan la grabación y el texto después de ser descargados, garantizando así la privacidad del paciente. Según un estudio de la Universidad de Pensilvania, su uso incrementa en un 20 % el tiempo cara a cara con los pacientes y reduce en un 30 % el tiempo extra dedicado a papeleo.
Otro uso relevante es el análisis de imágenes médicas, como radiografías, tomografías y resonancias magnéticas. Mediante algoritmos entrenados con miles de imágenes normales y patológicas, la IA puede detectar anomalías con gran precisión. No obstante, la calidad del entrenamiento depende en gran medida de la diversidad y representatividad de los datos. Investigadores de la Universidad de Lovaina advierten que errores o sesgos en los datos pueden afectar directamente al rendimiento clínico del modelo, con consecuencias graves, como desigualdades de género o raciales.
También se destaca el análisis de biomarcadores, donde la IA examina grandes volúmenes de datos de pacientes para identificar patrones y predecir enfermedades, reacciones adversas o respuestas a medicamentos. Estos sistemas usan modelos predictivos para anticipar riesgos de forma proactiva.
Se presentan ejemplos concretos, como el programa SWIFT en el hospital Lyell McEwin de Adelaida, que utiliza notas médicas y datos clínicos (frecuencia cardíaca, análisis de sangre) para predecir si un paciente puede ser dado de alta en las siguientes 48 horas. El sistema emplea dos algoritmos: uno analiza texto clínico y el otro traduce variables numéricas en una puntuación de alta, conocida como Adelaide Score.
Los modelos de lenguaje de gran tamaño (LLM, por sus siglas en inglés), como los que utiliza ChatGPT, también están empezando a aplicarse en la medicina. Estos modelos convierten información en secuencias numéricas y predicen la siguiente entrada más probable, que luego se traduce en lenguaje natural. Son especialmente útiles para gestionar registros electrónicos o incluso para escribir informes clínicos.
En cuanto a la seguridad, se subraya la preocupación por el manejo de datos sensibles. En Australia del Sur, por ejemplo, las leyes impiden que los datos sanitarios se compartan con redes internacionales, obligando a que todo el procesamiento ocurra localmente. Esto limita la exposición y asegura que los datos no se utilicen para entrenar otros modelos, a diferencia de servicios comerciales como ChatGPT.
Paradójicamente, la IA también refuerza la ciberseguridad. Gracias a su capacidad de análisis, puede detectar comportamientos anómalos en redes, identificar accesos sospechosos y actuar preventivamente. Además, analiza patrones de uso y detecta si una cuenta ha sido usada por alguien que no es su usuario habitual.
Sin embargo, persisten preguntas éticas sobre la responsabilidad legal: si un sistema de IA comete un error que afecta al paciente, ¿quién es el responsable? Por ahora, estos sistemas siguen siendo supervisados por profesionales humanos que toman la última decisión, y por tanto, también asumen la responsabilidad.
En el campo emergente de la medicina de precisión, la IA ya predice fallos técnicos antes de que ocurran, lo que permite realizar mantenimientos preventivos y garantiza un funcionamiento seguro del equipamiento médico.
En conclusión, la IA tiene el potencial de hacer la sanidad más económica y accesible, al asumir tareas administrativas previas a la consulta y liberar tiempo para la atención médica directa. Esto podría reducir la necesidad de personal sin sacrificar calidad, mejorar la eficiencia y aumentar la satisfacción profesional del personal sanitario.