
Thelwall, M. (2024). ChatGPT for complex text evaluation tasks. Journal of the Association for Information Science and Technology, 1–4. https://doi.org/10.1002/asi.24966
ChatGPT y otros modelos de lenguaje a gran escala (LLMs) han demostrado ser efectivos en tareas de procesamiento de lenguaje natural y computacional con diversos niveles de complejidad. Este documento resume las lecciones aprendidas de una serie de investigaciones sobre su uso en la evaluación de calidad de investigaciones, una tarea compleja de análisis de textos.
En términos generales, ChatGPT destaca por su capacidad para comprender y ejecutar tareas complejas de procesamiento de textos, produciendo respuestas plausibles con un mínimo de intervención por parte del investigador. Sin embargo, los resultados deben ser evaluados sistemáticamente, ya que pueden ser engañosos. A diferencia de las tareas simples, los resultados en tareas complejas son muy variables, y se pueden obtener mejores resultados repitiendo los comandos en sesiones diferentes y promediando las respuestas obtenidas. Modificar los parámetros de configuración de ChatGPT respecto a sus valores predeterminados no parece ser útil, excepto en lo relacionado con la extensión del texto solicitado en las respuestas.
Capacidad de Procesamiento Complejo: ChatGPT es muy hábil para realizar tareas de análisis textual complejo, generando respuestas plausibles con instrucciones detalladas. Sin embargo, sus resultados no siempre son precisos y requieren validación sistemática.
Variabilidad en Tareas Complejas: A diferencia de tareas simples (como análisis de sentimiento), los resultados en evaluaciones complejas varían significativamente. Mejores resultados se obtienen al repetir los comandos múltiples veces y promediando las respuestas.
Configuración del Modelo: Cambiar parámetros predeterminados no suele mejorar los resultados, salvo ajustes en la longitud de la salida. Modelos más avanzados (como GPT-4o frente a 4o-mini) ofrecen mejor desempeño, pero versiones económicas pueden ser una opción práctica.
Estructura de las Instrucciones: Instrucciones complejas y detalladas, adaptadas del formato usado por evaluadores humanos, producen mejores resultados. Sin embargo, instrucciones más breves y simplificadas tienden a disminuir la precisión.
Evaluación y Limitaciones: ChatGPT puede producir salidas plausibles, pero estas no siempre reflejan una evaluación significativa. Por ejemplo, al evaluar artículos basándose en títulos y resúmenes en lugar del texto completo, ChatGPT ofrece mejores resultados, probablemente debido a la concisión de la información.
Uso de Información Condensada: Aunque puede manejar textos extensos, ChatGPT parece ser más efectivo al trabajar con entradas resumidas, como títulos y resúmenes, en lugar de textos completos, evitando sobrecarga de información irrelevante.
Financiación y Costos: Realizar evaluaciones sistemáticas con múltiples iteraciones implica altos costos en el uso de la API. Por ello, las versiones más económicas de los modelos, aunque menos precisas, pueden ser adecuadas para ciertos proyectos.
Fine-Tuning: La personalización del modelo mediante fine-tuning es efectiva en tareas simples, pero no parece prometedora para evaluaciones complejas debido a la diversidad de salidas posibles y la falta de patrones consistentes en evaluaciones humanas.
Como conclusión puede decirse que ChatGPT muestra un gran potencial en la evaluación académica, pero sus limitaciones subrayan la necesidad de realizar validaciones exhaustivas. Los investigadores deben considerar enfoques sistemáticos, como repetir comandos y ajustar configuraciones, para optimizar resultados. Aunque aún quedan cuestiones abiertas, como el papel del fine-tuning en estas tareas, los resultados sugieren que LLMs pueden complementar, pero no reemplazar, las evaluaciones humanas en tareas complejas.