
Winter, Joost de. «Can ChatGPT Be Used to Predict Citation Counts, Readership, and Social Media Interaction? An Exploration among 2222 Scientific Abstracts». Scientometrics, 15 de febrero de 2024. https://doi.org/10.1007/s11192-024-04939-y.
Este estudio explora el potencial de ChatGPT, un modelo de lenguaje avanzado, en la cientometría al evaluar su capacidad para predecir el número de citas, lectores en Mendeley y engagement en redes sociales. En este estudio, se analizaron 2222 resúmenes de artículos de PLOS ONE publicados durante los primeros meses de 2022 utilizando ChatGPT-4, el cual empleó un conjunto de 60 criterios para evaluar cada resumen. Mediante un análisis de componentes principales, se identificaron tres componentes: Calidad y Confiabilidad, Accesibilidad y Comprensibilidad, y Novedad y Compromiso. La Accesibilidad y Comprensibilidad de los resúmenes se correlacionaron con una mayor lectura en Mendeley, mientras que la Novedad y Compromiso y la Accesibilidad y Comprensibilidad estuvieron vinculadas con el número de citas (Dimensiones, Scopus, Google Scholar) y la atención en redes sociales. La Calidad y Confiabilidad mostró una correlación mínima con los resultados de citas y altmétricos. Finalmente, se encontró que las correlaciones predictivas de las evaluaciones basadas en ChatGPT superaron a las métricas de legibilidad tradicionales. Los hallazgos resaltan el potencial de los modelos de lenguaje avanzados en la cientometría y posiblemente abren el camino para la revisión por pares asistida por inteligencia artificial.